
Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 1 -

Lecture 3
Linear Data Structures

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 2 -

Learning Outcomes

•  Based on this lecture, you should:
–  Know the basic linear data structures

–  Be able to express each as an Abstract Data Type (ADT)

–  Be able to specify each of these ADTs as a Java interface.

–  Be able to outline the algorithms for creating, accessing and
modifying each data structure

–  Be able to analyze the running time of these operations

–  Be able to identify particular applications for which each data
structure would be suited.

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 3 -

Linear Data Structures

•  Arrays (Ch. 3.1)

•  Array Lists (Ch. 7.2)

•  Stacks (Ch. 6.1)

•  Queues (Ch. 6.2)

•  Linked Lists (Ch. 3.2 – 3.4)

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 4 -

Linear Data Structures

•  Arrays (Ch. 3.1)

•  Array Lists (Ch. 7.2)

•  Stacks (Ch. 6.1)

•  Queues (Ch. 6.2)

•  Linked Lists (Ch. 3.2 – 3.4)

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 5 -

Arrays

•  Array: a sequence of indexed components with
the following properties:
–  array size is fixed at the time of array’s construction

•  int[] numbers = new int [10];

–  array elements are placed contiguously in memory

•  address of any element can be calculated directly as its offset
from the beginning of the array

–  consequently, array components can be efficiently inspected or
updated in O(1) time, using their indices

•  randomNumber = numbers[5];

•  numbers[2] = 100;

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 6 -

Arrays in Java

•  For an array of length n, the index bounds are 0 to n-1.

•  Java arrays are homogeneous
–  all array components must be of the same (object or primitive) type.
–  but, an array of an object type can contain objects of any respective subtype

•  An array is itself an object.
–  it is allocated dynamically by means of new

–  it is automatically deallocated when no longer referred to

•  When an array is first created, all values are automatically initialized with
–  0, for an array of int[] or double[] type

–  false, for a boolean[] array

–  null, for an array of objects

•  Example [common error –unallocated arrays]
int[] numbers;

numbers[2] = 100;

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 7 -

Arrays in Java
•  The length of any array object can be accessed through its

instance variable ‘length’.
–  the cells of an array A are numbered: 0, 1, .., A.length-1

•  ArrayIndexOutOfBoundsException
–  thrown at an attempt to index into array A using a number larger than

A.length-1.

–  helps Java avoid ‘buffer overflow attacks’

•  Example [declaring, defining and determining the size of
an array]
int[] A={12, 24, 37, 53, 67};

for (int i=0; i < A.length; i++) {

…}

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 8 -

Buffer Overflows

Mon, 09 Aug 2004 17:24:19 GMT

…a buffer overflow exploit is one in which someone sends too much data to a program
(such as a web server application), sending far more data than the program would
expect, in order to force arbitrary data into a storage area (a "buffer") so the amount of
data forced into the buffer goes beyond the expected limits, causing the data to overflow
the buffer and makes it possible for that data to be executed as arbitrary program code.
Since the attacker forces code of his choosing into the execution stream, he now 0wns
your box, because as the saying goes, if I can run code on your machine - especially if
it's a Windows machine where there is not much protection - I can pretty much do
anything I please there.

Windows Buffer Overflow Protection Programs: Not Much

<"Paul Robinson" <postmaster@paul.washington.dc.us>>

Tue, 10 Aug 2004 15:26:44 GMT An 9 Aug 2004

…there is a bug in AOL Instant Messenger allowing an attacker to send a message
that can cause a buffer overflow and possibly execute code on the attacked
machine. Apparently this will only occur if the attacker sends a url - like the one in this
message - as a hyperlink and the victim clicks on it, which makes the probability of attack
much lower than a "standard buffer overflow attack" upon a program.

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 9 -

Arrays in Java
•  Since an array is an object, the name of the array is actually a

reference (pointer) to the place in memory where the array is stored.
–  reference to an object holds the address of the actual object

•  Example [copying array references]
int[] A={12, 24, 37, 53, 67};

int[] B=A;

B[3]=5;

•  Example [cloning an array]
int[] A={12, 24, 37, 53, 67};

int[] B=A.clone();

B[3]=5;

12 24 37 53 67

12 24 37 5 67

12 24 37 53 67

12 24 37 53 67

12 24 37 53 67

12 24 37 5 67

A
B

A
B

A

B

A

B

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 10 -

Example

Examples [2D array in Java = array of arrays]

•  int[][] nums = new int[5][4];

OR

•  int[][] nums;

 nums = new int[5][];

 for (int i=0; i<5; i++) {

 nums[i] = new int[4];

 }

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 11 -

Caution

•  Clone does a shallow copy
int[][] A = new int[5][4];

…

int[][] B = A.clone(); 2 8 1 6

2 9 7 2

3 2 6 4

1 6 5 3

1 6 5 3

A

B

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 12 -

Caution

•  This is also affects cloning of one-dimensional arrays of
reference types (objects).

•  Example: Person[] guests = contacts.clone();

1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0

guests

contacts

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 13 -

Deep Copies

•  Deep copies must be made by iteratively cloning or
copying individual elements.

•  Example:
Person[] guests = new Person[contacts.length];

for (int k=0; k < contacts.length; k++)

 guests[k] = (Person) contacts[k].clone();

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 14 -

Assignment 1, Question 2
•  In image processing, a frequent operation is to compute the average image value

(intensity) or some other statistic over a rectangular sub-region of the image. The
region of interest can be specified by 4 integer parameters: top, bottom, left and right.

•  We will implement a class called IntegralImage, which will allow the average over an
arbitrary rectangular sub-image to be computed in O(1) time, using only O(n) memory.

•  Images will be stored in 2D arrays. The first index of the array indicates the row number
(vertical position) and the second index indicates the column number (horizontal
position). Vertical position is indexed from the top down, and horizontal position is
indexed from left to right. Thus image[0][0] is the top left pixel of the image.

•  The constructor method IntegralImage will accept an input integer image and will
construct, in O(n) time, a new data structure using O(n) memory that will allow O(1)
computation of sub-image averages. If the input array is not rectangular,
IntegralImage will throw an InvalidImageException.

•  The query method meanSubImage(top, bottom, left, right) will return the average of all
pixels in the subimage extending from top to bottom bounds vertically and left to right
bounds horizontally, in O(1) time. The pixels lying at the bounds are included in this
calculation.

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 15 -

Sept 22, 2015

End of Lecture

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 16 -

Arrays in Java

•  Useful Built-In Methods in Java.util.Arrays
–  equals(A,B)

•  returns true if A and B have an equal number of elements and every
corresponding pair of elements in the two arrays are equal

–  fill(A,x)
•  store element x into every cell of array A

–  sort(A)
•  sort the array A in the natural ordering of its elements

–  binarySearch([int] A, int key)
•  search the specified array of sorted ints for the specified value using

the binary search algorithm (A must be sorted)

The Java.util.Arrays Class

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 17 -

What is Printed?
import java.util.Arrays;

int[] A={12, 24, 37, 53, 67};

int[] B=A.clone();

if (A==B) {

 System.out.println(“ Superman ”);

}

if (Arrays.equals(A, B)) {

 System.out.println(“ Snow White ”);

}

Answer: Snow White

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 18 -

Caution

•  As for clone, Arrays.equals(a,b) tests for shallow equality
What is printed?

int[][] B = A.clone();

if (Arrays.equals(A, B)) {

 System.out.println(“ Snow White ”);
} else {

 System.out.println(“ Superman ”);
}

2 8 1 6

2 9 7 2

3 2 6 4

1 6 5 3

1 6 5 3

A

B

Answer: Superman

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 19 -

Limitations of Arrays

•  Static data structure
–  size must be fixed at the time the program creates the array

–  once set, array size cannot be changed

–  if number of entered items > declared array size ⇒ out of memory
•  fix 1: use array size > number of expected items ⇒ waste of memory

•  fix 2: increase array size to fit the number of items ⇒ extra time

•  Insertion / deletion in an array is time consuming
–  all the elements following the inserted element must be shifted appropriately

•  Example [time complexity of “growing” an array]
if (numberOfItems > numbers.length) {

 int[] newNumbers = new int[2*numbers.length];

 System.arraycopy(numbers, 0, newNumbers, 0, numbers.length);

 numbers = newNumbers;

}
Source start idx Dest start idx

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 20 -

Linear Data Structures

•  Arrays (Ch. 3.1)

•  Array Lists (Ch. 7.2)

•  Stacks (Ch. 6.1)

•  Queues (Ch. 6.2)

•  Linked Lists (Ch. 3.2 – 3.4)

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 21 -

The Array List ADT

•  Like an array, the Array List ADT stores a sequence of
arbitrary objects

•  An element can be accessed, modified, inserted or
removed by specifying its rank (number of elements
preceding it)

•  An exception is thrown if an incorrect rank is specified
(e.g., a negative rank)

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 22 -

The Array List ADT
/** Simplified version of java.util.List */
public interface List<E> {

/** Returns the number of elements in this list */
public int size();

/** Returns whether the list is empty. */
public boolean isEmpty();

/** Append element e to end of list */
public void add(E e);

/** Inserts an element e to be at index I, shifting all elements after this right. */
public void add(int I, E e) throws IndexOutOfBoundsException;

/** Returns the element at index I, without removing it. */
public E get(int i) throws IndexOutOfBoundsException;

/** Removes and returns the element at index I, shifting the elements after this left. */
public E remove(int i) throws IndexOutOfBoundsException;

/** Replaces the element at index I with e, returning the previous element at i. */
public E set(int I, E e) throws IndexOutOfBoundsException;
}

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 23 -

A Simple Array-based Implementation

•  Use an array V of size N
•  A variable n keeps track of the size of the array list

(number of elements stored)

•  Operation get(r) is implemented in O(1) time by
returning V[r]

V
0 1 2 n r

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 24 -

Insertion

•  In operation add(r, e), we need to make room for
the new element by shifting forward the n - r
elements V[r], …, V[n - 1]

•  In the worst case (r = 0), this takes O(n) time

V
0 1 2 n r

V
0 1 2 n r

V
0 1 2 n

e
r

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 25 -

Deletion

•  In operation remove(r), we need to fill the hole left by
the removed element by shifting backward the n - r - 1
elements V[r + 1], …, V[n - 1]

•  In the worst case (r = 0), this takes O(n) time

V
0 1 2 n r

V
0 1 2 n

e
r

V
0 1 2 n r

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 26 -

Performance
•  In the array based implementation

–  The space used by the data structure is O(n)

–  size, isEmpty, get and set run in O(1) time

–  add and remove run in O(n) time

•  In an add operation, when the array is full,
instead of throwing an exception, we could
replace the array with a larger one.

•  In fact java.util.ArrayList implements this
ADT using extendable arrays that do just
this.

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 27 -

Implementing Array Lists using Extendable Arrays

•  In an add operation, when the array
is full, instead of throwing an
exception, we can replace the array
with a larger one

•  How large should the new array be?
–  incremental strategy: increase the

size by a constant c
–  doubling strategy: double the size

•  Let
–  n = current number of elements in array

 N = capacity of array

Algorithm add(e)
 if n = N
 then
 A ç new array of size N*
 N = N*
 for i ç 0 to N-1 do
 A[i] ç S[i]
 S ç A
 n ç n + 1
 S[n] ç e

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 28 -

Comparison of the Strategies

•  We compare the incremental strategy and the doubling
strategy by analyzing the total time T(n) needed to
perform a series of n add operations

•  We simplify the analysis by assuming add(e) operations
that append the object to the end of the list.

•  We assume that we start with an empty array list (n = 0)
represented by an array of capacity 0 (N = 0).

•  The amortized time of an add(e) operation is the
average time taken over the series of operations, i.e.,
T(n)/n

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 29 -

Incremental Strategy

n N
0 0

1 c Extend array
2 c

c c

c + 1 2c Extend array

2c 2c

2c + 1 3c Extend array

n

 

 

 

 

 

 

kc, where k = n / c⎡⎢ ⎤⎥

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 30 -

Incremental Strategy Analysis
•  We replace the array times
•  The total time T(n) of a series of n add(e) operations is

proportional to

n + c + 2c + 3c + 4c + … + kc =

n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2

•  (Recall that JAVA initializes all elements of an allocated
array.)

•  Since c is a constant, T(n) is O(n + k2), i.e., O(n2)

•  The amortized time of an add(e) operation is O(n)

 k = n / c⎡⎢ ⎤⎥

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 31 -

Doubling Strategy Analysis
•  We replace the array times
•  The total time T(n) of a series of n add(o)

operations is proportional to

 n + 1 + 2 + 4 + 8 + …+ 2k

 = n + 2k + 1 -1

 ≤ 9n

•  Thus T(n) is O(n)

•  The amortized time of an add operation is
O(1)!

geometric series

1

2

1
4

8

Recall: r
i

i=0

n

∑ =
1− r

n+1

1− r

⎛

⎝⎜
⎞

⎠⎟

 k = log n⎡⎢ ⎤⎥ +1

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 32 -

Applications of Array Lists

•  Maintaining a sorted list when insertions and removals
are relatively rare.
–  List of plant species by name

–  List of elements by atomic weight

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 33 -

Doubling Strategy

n N
0 0

1 1 Extend array
2 2 Extend array
3 4 Extend array
4 4

5 8 Extend array
6 8

7 8

8 8

n
  

2k , where k = logn⎡⎢ ⎤⎥

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 34 -

Sept 24, 2015

End of Lecture

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 35 -

Linear Data Structures

•  Arrays (Ch. 3.1)

•  Array Lists (Ch. 7.2)

•  Stacks (Ch. 6.1)

•  Queues (Ch. 6.2)

•  Linked Lists (Ch. 3.2 – 3.4)

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 36 -

The Stack ADT
•  The Stack ADT stores

arbitrary objects

•  Insertions and deletions
follow the last-in first-out
scheme

•  Think of a spring-loaded
plate or Pez dispenser

•  Main stack operations:
–  push(e): inserts an element

–  object pop(): removes and
returns the last inserted
element

•  Auxiliary stack
operations:
–  object top(): returns the

last inserted element
without removing it

–  integer size(): returns the
number of elements
stored

–  boolean isEmpty():
indicates whether no
elements are stored

Note: java.util.Stack provides push and pop,
but differs in other respects.

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 37 -

Stack Interface

q Assumes null is
returned from top()
and pop() when stack
is empty

q Different from the
built-in Java class
java.util.Stack

public interface Stack<E> {

 int size();

 boolean isEmpty();

 E top();

 void push(E element);

 E pop();
}

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 38 -

Example

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 39 -

Applications of Stacks

•  Page-visited history in a Web browser
•  Undo sequence in a text editor

•  Chain of method calls in the Java Virtual Machine

•  Parsing math

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 40 -

Method Stack in the JVM
•  The Java Virtual Machine

(JVM) keeps track of the chain
of active methods with a stack

•  When a method is called, the
JVM pushes on the stack a
frame containing
–  Local variables

–  Program counter, keeping track of
the statement being executed

•  When a method ends, its frame
is popped from the stack and
control is passed to the method
on top of the stack

•  Allows for recursion

main() {
 int i = 5;
 foo(i);
 }

foo(int j) {
 int k;
 k = j+1;
 bar(k);
 }

bar(int m) {
 …
 }

bar
 PC = 1
 m = 6

foo
 PC = 3
 j = 5
 k = 6

main
 PC = 2
 i = 5

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 41 -

Array-based Stack

•  The Stack ADT can
be implemented with
an array

•  We add elements
from left to right

•  A variable keeps
track of the index of
the top element

S
0 1 2 t

…

Algorithm size()
 return t + 1

Algorithm pop()

 if isEmpty() then
 return null
 else
 t ç t - 1
 return S[t + 1]

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 42 -

Array-based Stack (cont.)
•  If using an array of fixed size, the stack may become full

•  A push operation will then throw an IllegalStateException
–  Limitation of the array-based implementation

–  Not intrinsic to the Stack ADT

–  For example, in java.util.Stack, the array is extendable.

S
0 1 2 t

…

Algorithm push(e)
 if t = S.length - 1 then
 throw IllegalStateException
 else
 t t + 1
 S[t] ç e

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 43 -

Performance and Limitations

•  Performance
–  Let n be the number of elements in the stack

–  The space used is O(n)

–  Each operation runs in time O(1)

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 44 -

Array-based Stack in Java

public class ArrayStack<E>
 implements Stack<E> {

 // holds the stack elements
 private E[] S;

 // index to top element
 private int top = -1;

 // constructor
 public ArrayStack(int capacity) {
 S = (E[]) new Object[capacity]);
 }

 public E pop() {
 if isEmpty()
 return null;
 E temp = S[top];
 // facilitate garbage collection:
 S[top] = null;
 top = top – 1;
 return temp;
 }

… (other methods of Stack interface)

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 45 -

Example Use in Java

public class Tester {

 // … other methods
 public intReverse(Integer a[]) {
 Stack<Integer> s;

 s = new ArrayStack<Integer>();

 … (code to reverse array a) …
 }

 public floatReverse(Float f[]) {
 Stack<Float> s;
 s = new ArrayStack<Float>();

 … (code to reverse array f) …
 }

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 46 -

Example Application: Parenthesis Matching

•  Each “(”, “{”, or “[” must be paired with a matching “)”, “}”,
or “[”
–  correct: ()(()){([()])}

–  correct: ((()(()){([()])}

–  incorrect:)(()){([()])}

–  incorrect: ({[])}

–  incorrect: (

•  Note that each closing symbol must match the most
recent unmatched open symbol.

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 47 -

Parentheses Matching Algorithm
Algorithm ParenMatch(X,n):

Input: An array X of n tokens, each of which is either a grouping symbol, a

variable, an arithmetic operator, or a number

Output: true if and only if all the grouping symbols in X match

Let S be an empty stack

for i=0 to n-1 do
 if X[i] is an opening grouping symbol then

 S.push(X[i])
 else if X[i] is a closing grouping symbol then

 if S.isEmpty() then
 return false {nothing to match with}

 if S.pop() does not match the type of X[i] then
 return false {wrong type}

if S.isEmpty() then
 return true {every symbol matched}

else
 return false {some symbols were never matched}

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 48 -

Assignment 1 Q3. Minimum Value Stack

•  You are designing a new class MinStack that
specializes the java.util.Stack class to Comparable
objects and provides a new method min() that will return
the minimum value on the stack in O(1) time.

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 49 -

The Comparable Interface

•  Part of the Collections Framework in java.util.

•  Imposes a total ordering on the objects of a class that
implements it.

•  Objects can be compared using the compareTo method.

•  obj1.compareTo(obj2) returns
–  Negative integer if obj1 < obj2

–  Positive integer if obj1 > obj2

–  0 if obj1 = obj2

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 50 -

Linear Data Structures

•  Arrays (Ch. 3.1)

•  Array Lists (Ch. 7.2)

•  Stacks (Ch. 6.1)

•  Queues (Ch. 6.2)

•  Linked Lists (Ch. 3.2 – 3.4)

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 51 -

The Queue ADT
•  Insertions and deletions follow

the first-in first-out (FIFO)
scheme

•  Insertions are at the rear of the
queue and removals are at the
front of the queue

•  Main queue operations:
–  enqueue(object): inserts an

element at the end of the queue

–  object dequeue(): removes and
returns the element at the front
of the queue

•  Auxiliary queue operations:
–  object first(): returns the

element at the front without
removing it

–  integer size(): returns the
number of elements stored

–  boolean isEmpty(): indicates
whether no elements are
stored

•  Exceptions
–  Attempting the execution of

dequeue or first on an empty
queue returns null

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 52 -

Queue Example
Operation 	

 	

Output 	

Q

enqueue(5) – 	

(5)

enqueue(3) – 	

(5, 3)

dequeue() 5 	

(3)
enqueue(7) – 	

(3, 7)

dequeue() 3 	

(7)

first() 7 	

(7)

dequeue() 7 	

()

dequeue() null 	

()

isEmpty() true 	

()

enqueue(9) – 	

(9)

enqueue(7) – 	

(9, 7)
size() 	

 	

2 	

(9, 7)

enqueue(3) – 	

(9, 7, 3)

enqueue(5) – 	

(9, 7, 3, 5)

dequeue() 9 	

(7, 3, 5)

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 53 -

Array-Based Queue
•  Use an array of size N in a circular fashion
•  Two variables keep track of the front and rear

f index of the front element
r index immediately past the rear element

•  Array location r is kept empty

Q
0 1 2 r f

normal configuration

Q
0 1 2 f r

wrapped-around configuration

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 54 -

Queue Operations

•  We use the
modulo operator
(remainder of
division)

Algorithm size()
 return (r + N – f) mod N

Algorithm isEmpty()

 return (f = r)

Q
0 1 2 r f

Q
0 1 2 f r

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 55 -

Queue Operations (cont.)

•  Operation enqueue
may throw an
exception if the array is
full

Algorithm enqueue(e)
 if size() = N - 1 then
 throw IllegalStateException
 else
 Q[r] ç e
 r ç (r + 1) mod N

Q
0 1 2 r f

Q
0 1 2 f r

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 56 -

Queue Operations (cont.)

•  Operation dequeue
throws an exception
if the queue is empty

Algorithm dequeue()
 if isEmpty() then
 throw EmptyQueueException
 else
 e ç Q[f]
 f ç (f + 1) mod N
 return e

Q
0 1 2 r f

Q
0 1 2 f r

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 57 -

Queue Interface in Java

•  Java interface
corresponding to
our Queue ADT

•  Assumes that
first() and
dequeue() return
null if queue is
empty

public interface Queue<E> {

 int size();

 boolean isEmpty();

 E first();

 void enqueue(E e);

 E dequeue();
}

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 58 -

Array-based Implementation

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 59 -

Array-based Implementation

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 60 -

Comparison to java.util.Queue

•  Our Queue methods and corresponding methods of
java.util.Queue:

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 61 -

Linear Data Structures

•  Arrays (Ch. 3.1)

•  Array Lists (Ch. 7.2)

•  Stacks (Ch. 6.1)

•  Queues (Ch. 6.2)

•  Linked Lists (Ch. 3.2 – 3.4)

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 62 -

Linked Lists

•  By virtue of their random access nature, arrays support
non-structural read/write operations (e.g., get(i), set(i))
in O(1) time.

•  Unfortunately, structural operations (e.g., add(i,e)
remove(i)) take O(n) time.

•  For some algorithms and inputs, structural operations
may dominate the running time.

•  For such cases, linked lists may be more appropriate.

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 63 -

Singly Linked List
•  A singly linked list is a

data structure consisting
of a sequence of nodes

•  Each node stores
–  element
–  link to the next node

next

elem node

A B C D

∅

head tail

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 64 -

Example Java Class for Singly-Linked Nodes
Private static class Node<E> {
 // Instance variables:
 private E element;
 private Node<E> next;

/** Create a node with the given element and next node. */
 public Node(E e, Node<E> n) {
 element = e;
 next = n;
 }

// Accessor methods:
public E getElement() { return element; }
public Node<E> getNext() { return next; }

// Modifier methods:
public void setNext(Node<E> n) { next = n; }

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 65 -

Example Java Class for Singly-Linked List

public class SinglyLinkedList<E> {
 // Instance variables:
 private Node head = null; //head node of list
 private Node tail = null; //tail node of list
 private int size = 0; //number of nodes in list
 /** Default constructor that creates an empty list. */
 public SinglyLinkedList() {}
 // update and search methods go here…
}

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 66 -

Inserting at the Head

1.  Construct new node
with new element

2.  Have new node point
to old head

3.  Update head to point
to new node

4.  If list was initially
empty, have to
update tail as well.

tail

tail

tail

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 67 -

Sept 29, 2015

End of Lecture

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 68 -

Removing at the Head

1.  Update head to
point to next node
in the list

2.  Allow garbage
collector to reclaim
the former first
node

3.  If list is now empty,
have to update tail
as well.

tail

tail

tail

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 69 -

Example Application: Implementing a Stack
with a Singly-Linked List

•  Earlier we saw an array implementation of a stack.

•  We could also implement a stack with a singly-linked list

•  The top element is stored at the first node of the list

•  The space used is O(n) and each operation of the Stack ADT
takes O(1) time

t

nodes

elements

∅

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 70 -

Implementing a Queue with a Singly-Linked List
•  Just as for stacks, queue implementations can be based upon either arrays or

linked lists.

•  In a linked list implementation:
–  The front element is stored at the first node

–  The rear element is stored at the last node

•  The space used is O(n) and each operation of the Queue ADT takes O(1) time

•  Are there any advantages?

f

r

nodes

elements

∅

Don’t have to worry about array overflow!

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 71 -

Assignment 1 Q1. Sparse Vectors

•  In many applications, vectors are sparse, that is, they contain mainly 0
elements, e.g., [0 0 0 0 13.4 0 0 14.5 0 0 0 12.2].

•  It is inefficient to represent such vectors as regular arrays. Instead, we
consider a data structure that only represents data values that are
non-zero.

•  It will do this by maintaining both the value and the one-based position
of each value in the vector. Thus the previous vector can be
represented as [(5, 13.4), (8, 14.5), (12, 12.2)].

•  We will represent this data structure as a singly-linked list, with
elements containing both position indices and values.

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 72 -

Running Time

•  Adding at the head is O(1)

•  Removing at the head is O(1)

•  How about tail operations?

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 73 -

Inserting at the Tail

1.  Construct new node
with new element

2.  Have new node point
to null

3.  Have old last node
point to new node

4.  Update tail to point to
new node

5.  If list initially empty,
have to update head
as well.

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 74 -

Removing at the Tail
•  Removing at the tail

of a singly linked list
is not efficient!

•  There is no
constant-time way to
update the tail to
point to the previous
node

•  How could we solve
this problem?

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 75 -

Doubly Linked List
•  Doubly-linked lists allow more flexible list management (constant

time operations at both ends).

•  Nodes store:
–  element

–  link to the previous node

–  link to the next node

•  Special trailer and header (sentinel) nodes

prev next

elem

trailer header nodes/positions

elements

node

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 76 -

Insertion
•  addBetween(E e Node<E> predecessor, Node<E> successor)

constructs a new node containing element e and inserts it
between predecessor and successor nodes

A B e C

A B C

A B C

predecessor

e

successor

predecessor successor

predecessor successor

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 77 -

Insertion Algorithm

private void addBetween(E e, Node<E> predecessor, Node<E>
successor) {

 Node<E> newest = new Node<>(e, predecessor, successor);

 predecessor.setNext(newest); {link forward}

 successor.setPrev(newest); {link back}

 size++;

}

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 78 -

Deletion

•  Remove(Node<E> node) removes node from the list and returns
the element that had been stored there.

A B C D

node

A B C

D

node

A B C

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 79 -

Deletion Algorithm

Private E remove(Node<E> node) {
 Node<E> predecessor = node.getPrev();

 Node<E> sucessor = node.getNext();

 predecessor.setNext(successor); {link forward}

 successor.setPrev(predecessor); {link back}

 size--;

 return node.getElement();

}

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 80 -

Running Time

•  Insertion and Deletion of any given node takes O(1)
time.

•  However, depending upon the application, finding the
insertion location or the node to delete may take longer!

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 81 -

Linear Data Structures

•  Arrays (Ch. 3.1)

•  Array Lists (Ch. 7.2)

•  Stacks (Ch. 6.1)

•  Queues (Ch. 6.2)

•  Linked Lists (Ch. 3.2 – 3.4)

Last Updated: September 29, 2015
EECS 2011
Prof. J. Elder - 82 -

Learning Outcomes

•  Based on this lecture, you should:
–  Know the basic linear data structures

–  Be able to express each as an Abstract Data Type (ADT)

–  Be able to specify each of these ADTs as a Java interface.

–  Be able to outline the algorithms for creating, accessing and
modifying each data structure

–  Be able to analyze the running time of these operations

–  Be able to identify particular applications for which each data
structure would be suited.

